
Fiat 127 1049 cm³

opis části servisního manuálu

Supplement

Contents

Introduction	1
Specifications	2
Engine	
Fuel system Carburettors - general Weber or Solex single venturi carburettors Weber dual venturi carburettor Carburettor overhaul - general	4
Ignition system Automatic centrifugal advance curves	5
Braking system Brake fluid reservoir and vacuum servo unit (Sport)	6
Electrical system Charging system Fuses (127 Special) Fuses (1049 cc models)	7
Bodywork and fittings Model variations Wing mouldings and front spoiler (Sport) - removal and refitting Rear spoiler (Sport) – removal and refitting	8

1. Introduction

Since its first introduction in 1971 the FIAT 127 has undergone a continuing programme of improvements concerned mainly with styling and trim alterations. However, in 1977 a new model range was introduced which included the option of a larger engine of 1049 cc capacity overhead with sinale camshaft. а In appearance, cars in the new range are broadly similar to the earlier models but they have a lower bonnet line, larger glass area and redesigned bumpers.

In October 1978, the FIAT 127-Sport was launched. This is a high performance version of the three door hatchback having the 1049 cc

engine with a twin choke carburettor. Apart from minor body styling changes, the Sport is equipped with a larger capacity sump, twin exhaust tailpipes, servo braking, additional instrumentation and a laminated windscreen.

This supplement has been added to cater for some of the production changes which have been made, but principally to cover the 1049 cc engine. The material given in Chapters 1 to 12 still applies unless superseded by information contained in this Supplement. Therefore, always read this Chapter in conjunction with the rest of the book.

Sport

2. Specifications

Capacities (1049 cc models)

Engine oil (includi L, C and CL Sport	ng filter change)	5.5 pints (3.1 litres) 7.7 pints (4.4 litres)
Coolant		9.7 pints (5.5 litres)
Fuel		6.7 gallons (30.5 litres) including 6.2 pints (3.5 litres) reserve
Transmission oil		4.2 pints (2.4 litres)

1049 cc OHC engine General

Gonoral	
Type number	127 A 000 (C, L and CL);
	127 A1.000 (Sport)
Bore	2.992 in (76 mm)
Stroke	2.276 in (57.8 mm)
Capacity	64 cu in (1049 cc)
Compression ratio	9,3 : 1 (C, L and CL);
	9,8 : 1 (Sport)
Maximum horsepower (DIN)	50 HP at 5600 rpm (C, L and CL);
	70 HP at 5600 rpm (Sport)

Valve mechanism

Inlet :		
Opens	2° BTDC	6°BTDC
Closes	42°ABDC	46°ABDC
Exhaust :		
Opens	42°BBDC	47°BBDC
Closes	2° ATDC	7° ATDC
Valve clearances (cold) :		
For checking valve timing:		
Inlet	0.028 in (0.70 mm)	0.032 in (0.80 mm)
Exhaust	0.028 in (0.70 mm)	0.032 in (0.80 mm)
Adjustment for running (engine cold) :		
Inlet	0.012 in (0.30 mm)	0.016 in (0.40 mm)
Exhaust	0.016 in (0 40 mm)	0.020 in (0.50 mm)

C, L and CL

Cylinder block and connecting rods	inches	mm
Cylinder bore diameter *	2.992 to 2.994	76.00 to 76.05
* Cylinder bores are graded and have a variation	on of 0.0004 inch (0.01 mr	n) between each grade
Main bearing housing bore diameter	2.044 to 2.045	51.921 to 51.934
Width of centre main bearing cap between	1.088 to 1.091	27.64 to 27.70
thrust washers		
Connecting rod big-end diameter	1.85 to 1.8560	47.130 to 47.142
Connecting rod small-end diameter	0.8638 to 0.8646	21.94 to 21.96
Big-end bearing shell thickness	0.0606 to 0.8646	1.539 to 1.55

Big-end bearing shell undersize range	0.01; 0.02; 0.03; 0.04	0.254; 0,508; 0.762; 1.016
Gudgeon pin interference fit in small-end:		
C, L and CL	0.0004 to 0.0017	0.01 to 0.042
Sport	0.0004 to 0.0006	0.01 to 0.016
Crankpin to bearing fit clearance	0.0009 to 0.003	0.022 to 0.076
Maximum misalignment between big and s	mall-end axes measured	4.92 in (125 mm) from
Connecting rod	± 0.004	± 0.10
Pistons, rings and pins	inches	mm
Standard piston diameter, measured 0.925 inch	(23.5 mm) from piston ski	rt base :
Grade A	2.989 to 2.9894	75.92 to 75.93
Grade C	2.9898 to 2.9902	75.94 to 75.95
Grade E	2.9906 to 2.9909	75.96 to 75.97
Range of oversize pistons	0.0079; 0.0157; 0.0236	0.2; 0.4; 0.6
Piston boss diameter (C, L and CL):		
Grade 1	0.8654 to 0.8656	21.982 to 21.986
Grade 2	0.8655 to 0.8657	21.986 to 21.990
Grade 3	0.8657 to 0.8659	21.990 to 21.994
Piston boss diameter (Sport):		
Grade 1	0.7874 to 0.7875	19.999 to 20.002
Grade 2	0.7875 to 0.7876	20.002 to 20.005
Ring groove width (C,L and CL) :		
Top groove	0.0604 to 0.0612	1.535 to 1.555
Centre grove	0.0799 to 0.0807	2.030 to 2.050
Bottom groove	0.1562 to 0.1570	3.967 to 3.987
Ring groove width (Sport) :		
Top groove	0.0604 to 0.0612	1.535 to 1.555
Centre grove	0.0793 to 0.0801	2.015 to 2.035
Bottom groove	0.1558 to 0.1566	3.957 to 3.977
Standard gudgeon pin diameter (C, L and CL):		
Grade 1	0.8650 to 0.8651	21.970 to 21.974
Grade 2	0.8651 to 0.8652	21.974 to 21.978
Grade 3	0.8652 to 0.8654	21.978 to 21.982
Standard dudgeon pin diameter (Sport) :		
Grade 1	0.7872 to 0.7873	19.994 to 19.997
Grade 2	0.7873 to 0.7874	19 997 to 20.000
Oversize gudgeon pin diameter	0.0079; 0.0157; 0.0236	0.2; 0.4; 0.6
Piston ring thickness :		
Top compression ring	0.0582 to 0.0587	1.478 to 1.490
2nd oil control ring	0.0779 to 0.0783	1.978 to 1.990
3rd oil scraper ring	0.1545 to 0.1550	3.925 to 3.937
Piston to bore fit clearance	0.0028 to 0.0035	0.070 to 0.090
Gudgeon pin fit clearance in piston	0.0003 to 0.0006	0.008 to 0.016
Piston ring side clearance in groove:		
1st compression ring	0.0018 to 0.003	0.045 to 0.077
2nd oil control ring	0.0010 to 0.0022	0.025 to 0.057
3rd oil scraper ring	0.0008 to 0.002	0.020 to 0.052
Piston ring end gap:		
1st compression ring (C, L and CL)	0.0079 to 0.0157	0.20 to 0.40
1st compression ring (Sport)	0.0118 to 0.0197	0.30 to 0.50
2nd oil control ring	0.0118 to 0.0197	0.30 to 0.50
3rd oil scraper ring	0.0079 to 0.0138	0.20 to 0.35
Piston rings oversize range	0.0079; 0.0157; 0.0236	

Crankshaft Main bearing journal diameter Standard main bearing shell thickness Main bearing shell undersize range Standard crankpin diameter Main bearing journal fit clearance Width of centre main bearing cap between thrust washers	inches 1.8972 to 1.898 0.0721 to 0.0726 0.01; 0.02; 0.03; 0.04 1.7318 to 1.7326 0.0009 to 0.033 1.2785 to 1.2805	mm 48.189 to 48.209 1.831 to 1.845 0.254; 0.508; 0.762; 1.016 43.988 to 44.008 0.022 to 0.083 32.475 to 32.525
Standard thrust washers thickness Thrust washers oversize range Crankshaft endfloat Maximum misalignment of main bearing journals	0.0909 to 0.0929 0.0959 to 0.0979 0.0022 to 0.0104 0.0012	2.31 to 2.36 2.437 to 2.487 0.055 to 0.265 0.030
Maximum misalignment of main bearing journals to crankpins	0.0138	0.350
Maximum ovality of crankpins and main bearing journals after grinding	0.0002	0.005
Maximum taper of crankpins and main bearing journals after grinding	0.0002	0.005
Maximum run-out of crankshaft flange with dial gauge stylus 31 mm (1.22 ins) from crankshaft rotational axis	0.001	0.025
Maximum run-out between flywheel face and crankshaft flange, and between flywheel face and crankshaft axis	0.0039	0.10
Cylinder head Standard valve guide housing bore Standard valve outside diameter Oversize valve guide Valve guide interference fit Fitted valve guide internal diameter Valve stem diameter Valve stem fit clearance in guide Valve head diameter: Inlet (C, L and CL) Inlet (Sport) Exhaust Valve seat width Valve seat internal diameter: Inlet (C, L and CL) Inlet (Sport) Exhaust (C, L and CL) Inlet (Sport) Angle of valve seat Angle of valve seat Angle of valve face Valve springs: Inner spring part no. Outer spring part no.	inches 0.5886 to 0.5896 0.5921 to 0.5928 0.002; 0.0039; 0.0098 0.0025 to 0.0043 0.3158 to 0.3165 0.3139 to 0.3146 0.0012 to 0.0026 1.3327 to 1.3445 1.4311 to 1.4429 1.1358 to 1.1476 0.0787 to 0.0866 1.1063 to 1.1142 1.2244 to 1.2323 0.9882 to 0.9961 1.0276 to 1.0354 $45^{\circ} \pm 5'$ $45^{\circ} 30' \pm 5'$ 4134900 4170458	mm 14.950 to 14.977 15.040 to 15.058 0.05; 0.10; 0.25 0.063 to 0.108 8.022 to 8.040 7.974 to 7.992 0.030 to 0.066 33.85 to 34.15 36.35 to 36.65 28.85 to 29.15 2.0 to 2.2 28.1 to 28.3 31.1 to 31.3 25.1 to 25.3 26.1 to 26.3
Valve gear Camshaft journal diameter:	inches	mm
Valve gear end Centre Flywheel end	1.1789 to 1.1795 1.0630 to 1.0636 0.9843 to 0.9848	29.945 to 29.960 27.000 to 27.015 25.000 to 25.015

Camshaft bearing bore diameter in head: Valve gear end Centre Flywheel end Camshaft journals fit clearance Cam lift (C, L and CL) Cam lift (Sport):	1.1807 to 1.1817 1.0648 to 1.0657 0.9860 to 0.9870 0.0012 to 0.0028 0.3425	29.990 to 30.015 27.045 to 27.070 25.045 to 25.070 0.030 to 0.070 8.700
Inlet Exhaust Standard tappet bore diameter Standard tappet outside diameter Tappet fit clearance Shim thickness	0.3622 0.3642 1.4567 to 1.4577 1.4557 to 1.4565 0.0002 to 0.0020 0.1279; 0.1299; then 0.0039 steps to 0.1850	9.200 9.250 37.000 to 37.025 36.975 to 36.995 0.005 to 0.050 3.2b; 3.30; then 0.10 steps to 4.70
Auxiliary shaft Diameter of bush bores in crankcase:	inches	mm
Front Rear Fitted bush internal diameter:	1.6339 to 1.6350 1.5733 to 1.5745	41.500 to 41.530 39.962 to 39.992
Front Rear Diameter of shaft journals:	1.5143 to 1.5151 1.4553 to 1.4561	38.464 to 38.484 36.964 to 36.984
Front Rear Bush fit Shaft/bush fit clearance (front and rear)	1.5115 to 1.5125 1.4525 to 1.4535 There must always be 0.0018 to 0.0036	38.393 to 38.418 36.893 to 36.918 an interference fit 0.046 to 0.091
Lubrication system Oil pump Pump drive Oil pressure relief valve Pump rotors endfloat Outer rotor to body clearance Inner to outer rotor clearance Oil pressure at 212 °F (100 °C)	Four lobe rotor type Through auxiliary shaft Incorporated in pump 0.0018 to 0.0047 0.0006 to 0.0022 0.0010 to 0.0039 50 to 70 lbf/in ²	0.045 to 0.120 0.016 to 0.055 0.025 to 0.100 (3.5 to 5 kgf/cm ²)
<i>Cooling system</i> Radiator fan thermal switch Cuts in . Cuts out	194° to 201 ℉ (90° to 94℃) 185° to 192℉ (85° to 89℃)	
Engine coolant thermostat Starts to open Fully open	176° to 183°F (80° to 84℃) 205°F (96℃)	
Impellor vanes to pump body fit clearance	0.0315 to 0.0512 in (0.8 to 1	.3 mm)
Radiator cap relief pressure	11.4 lbf/in ² (0.8 kgf/cm ²)	
<i>Fuel system</i> Weber 32 ICEV 16/150 carburettor (C, L and Venturi diameter Main jet .	CL models) 0.8465 in (21.5 mm) 0.0453 in (1.15 mm)	

Air correction jet Slow running jet Emulsion tube type Accelerator pump jet Needle valve seat Accelerator pump output (10 strokes) Cold starting device Float level CO level

0.0728 in (1.85 mm) 0.0177 in (0.45 mm) F74 0.0157 in (0.40 mm) 0.0591 in (1.50 mm) 2 to 3 cm³ Automatic choke 1.4016 to 1.4213 in (35.6 to 36.1 mm) 2.5%

Solex C32 TDI/4 carburettor (C, L and CL models)

Venturi diameter 0.8465 in (21.5 mm) Main jet 0.0453 in (1.15 mm) Air correction jet 0.0768 in (1.95 mm) Slow running jet 0.0177 in (0.45 mm) Emulsion tube type 71 Accelerator pump jet 0.0177 in (0.45 mm) 0.0630 in (1.60 mm) Needle valve seat Accelerator pump output I10 strokes) $3 \text{ to } 5 \text{ cm}^3$ Cold starting device Automatic choke Float level 0.8661 to 0.9449 in (22.0 to 24.0 mm) CO level 2.5%

Weber 34 DMTR 47/250 carburettor (Sport models)

Primary venturi Secondary venturi Venturi diameter 0.8661 in (22.0 mm) Main jet 0.0421 in (1.07 mm) Air correction jet 0.0728 in (1.85 mm) Slow running jet 0.0177 in (0.45 mm) Slow running air bleed 0.0413 in (1.05 mm) Accelerator pump jet 0.0157 in (0.40 mm) Needle valve seat 0.0689 in (1.75 mm) 8.55 cm³ Accelerator pump output (10 strokes) Cold starting device Manually operated strangler choke Float level 0.2657 to 0.2854 in (6.75 to 7.25 mm)

Fuel pump

Output Actuating lever stroke (C, L and CL) Actuating lever stroke (Sport) Delivery pressure at 4000 engine rpm and fuel temp 30 ℃ (86 °F)

Ignition system

Distributor Type and code Automatic centrifugal advance Condenser capacity (50 to 1000 Hz)

Clutch Lining outer diameter

Lining inner diameter

0.9449 in (24.0 mm) 0.0500 in (1.27 mm) 0.0866 in (2.20 mm) 0.0276 in (0.70 mm) 0.0276 in (0.70 mm)

75 litres/hr (16.5 gal/hr) 2.4 to 2.6 mm (0.0949 to 0.1024 in) 2.4 to 2.9 mm (0.0949 to 0.1142 in) 0.17 kgf/cm2 (2.55 lbf/in2)

Magneti Marelli S155HX 25° ± 2° at 4500 rpm 0.20 to 0.25 µF

181.5 mm (7.146 in)

127.0 mm (5.0 in)

Fiat 127 - 1050

Maximum run-out of driven plate linings	0.2 mm	า (0.0	08 ir	ר)		
Travel of release flange, corresponding to a pressure plate displacement of not les than 0.067 in ~1.7 mm)	s s 8.5 mm	า (0.3	346	in)		
<i>Transmission</i> Synchromesh				•	er baulk r ring ring t	ring type, type
Gear ratios First Second Third Fourth Reverse	3.910 : 2.055 : 1.348 : 0.963 : 3.615 :	1 1 1				
Final drive ratio (C,L and CL)	4.071 :	1 (14	4/57)			
Final drive ratio (Sport)	4.462 :	1 (13	3/58))		
Overall ratios Gears C, L and CL Sport <i>Electrical system</i> Alternator Type (C, L and CL) Type (Sport) Maximum output (approx) Maximum current (approx)Cut-in speed at 12V and 20 °C (68 °F)Field winding resistance across slip rings at 20 Direction of rotation (drive end) Engine/alternator drive ratio	1 st 15.92 17.45 ℃ (68 ℉)		7 Ma Luc 57(40 50 105 11(3.4 3.1	6.01 gneti Ma cas 18A0 watts amps (C amps (S 50 to 115 00 to 120 to 3.8 o 8 to 3.22 ockwise	4.30 arelli AA CR-A4V-4 C, L and (port) 50 rpm (C 00 rpm (S	16.13 108-14V-33A 45A CL) C, L and CL) Sport) L and CL)
Alternator regulator (C, L and CL models) Type Alternator speed for adjustment Current for thermal balance Regulating voltage			600 20	gneti Ma)0 rpm amps 2 ^{+0.3} 0.2	arelli RTT volts	⁻ 110 AB

Lamps

Lampo	
Headlamps (C, L and CL)	40/45 watts
Headlamps (Sport)	55/60 watts (Halogen)
Brake and rear light	5/21 watts
Turn indicators	21 watts
Reversing lights	21 watts
Parking lights	5 watts
Number plate	5 watts
Courtesy light	5 watts
Boot light	5 watts
Turn repeaters	4 watts
Cigar lighter light	4 watts
Instrument panel	3 watts
Ignition warning	3 watts
Turn indicator warning	1.2 watts
Headlamp warning	1.2 watts
Coolant temperature warning (L models)	1.2 watts
Oil pressure warning	1.2 watts
Fuel warning	1.2 watts
Hazard warning	1.2 watts
Sidelamp (out) warning (Sport only)	3 watts
Brake warning (Sport only)	1.2 watts
Heated rear window warning (Sport only)	1.2 watts

Fuses

For fuse details (127 Special, L, C, CL and Sport) see Sections 23 or 24

Steering and suspension (Sport only)

Steering angles	
Inner wheel	34°50'
Outer wheel	32°10'
Front wheel alignment (toe setting)	
Laden	0.079 in (2.0 mm) toe-in to 0.079 in (2.0 mm) toe-out
Unladen	0.138 in (3.5 mm) to 0.217 in (5.5 mm) toe-in

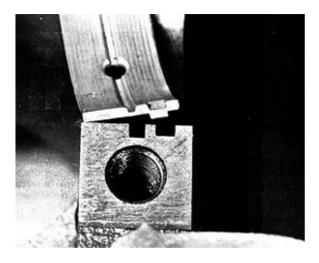
Roadwheels

Size Tyres 4½ B x 13 135 SR-13 or 155/70 SR-13

All 1049 cc models	lbf ft	kgf m
Main bearing cap bolts	59	8.2
Engine mounting securing bolts	43	6
Cylinder head to block bolts and nuts:		
1 st stage	30	4.1
2nd stage	45	6.2
Final stage	61	8.5
Manifold to head nuts	20	2.8
Connecting rod big-end nuts	38	5.2
Flywheel to crankshaft bolts	61	8.5
Driven gear (Plastic) to camshaft retaining bolt	87	12
Driven gear (steel) to camshaft retaining bolt	87	12
Camshaft cap nuts	14	2

Ignition distributor clamp nut Oil pump to crankcase bolts Cylinder head outlet pipe bolt Water pump/alternator drive pulley nut Alternator bracket to crankcase bolt Alternator to lower bracket bolt Cylinder head upper bracket bolt Alternator to upper bracket nut Upper bracket securing bolt Oil pressure switch Coolant temperature switch Spark plug	11 13 16 101 20 36 20 36 13 24 36 27	1.5 1.8 2.2 14 2.8 5 2.8 5 1.8 3.3 5 3.8
Sport models only		
Engine		
Flexible mounting to body (engine side)	65	9.0
Flexible mounting support (engine side to body)	18	2.5
Flexible mounting upper support to gearbox	18	2.5
Engine crossmember to body	18 18	2.5 2.5
Flexible mounting support nut (gearbox side) Flexible mounting support bolt to body	65	2.5 9.0
(gearbox LH side)	00	9.0
Steering and suspension		
Steering wheel retaining nut	22	3.0
Front wheel bearing ring nut	44	6.0
Front wheel hub nut	160	22.0
Roadwheel bolts	64	8.8
Front suspension track control arm to body	20	2.7
Front suspension balljoint to hub carrier	40	5.5
Rear wheel hub nut	160	22
Transmission		
Starter motor bolt to bellhousing lower support	18	2.5
Gear selector shaft nut	18	2.5
Upper gear lever relay lever	22	3.0
Idler support securing nut	18	2.5
Differential case flange to gearbox housing	18	2.5

3. Engine


1049 cc engine - general

1 This engine is of overhead camshaft design, using shims for valve clearance adjustment. The crankshaft is supported in five main bearings, the centre one incorporating the thrust washers which control crankshaft endfloat.

2 An auxiliary shaft, driven by the toothed camshaft belt, is used to drive the distributor and the fuel pump. 3 Most major engine components can be removed while the engine is in the car, but operations on the crankshaft, main bearings and flywheel can only be carried out after the engine has been removed.

4 Engine removal and subsequent dismantling follows closely the information given for the overhead valve engine in Chapter 1, but the sequence for complete engine following dismantling is recommended:

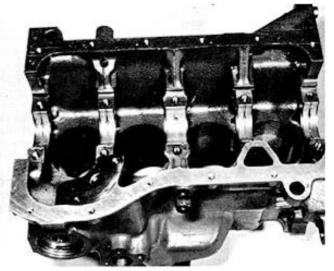
- (a) Engine ancillaries (alternator, fuel pump, distributor)
- (b) Timing belt cover
- (c) Water pump(d) Timing belt tensioner and belt
- (e) Manifolds
- (f) Cylinder head complete with camshaft
- (g) Crankshaft pulley
- (h) Auxiliary shaft sprocket
- (i) Sump
- (j) Oil pump and auxiliary shaft
- (k) Connecting rods and pistons
- (I) Flywheel and crankshaft oil seal carriers
- (m) Crankshaft and main bearings

3.7A Thoroughly clean the bearing shells and seats before assembly

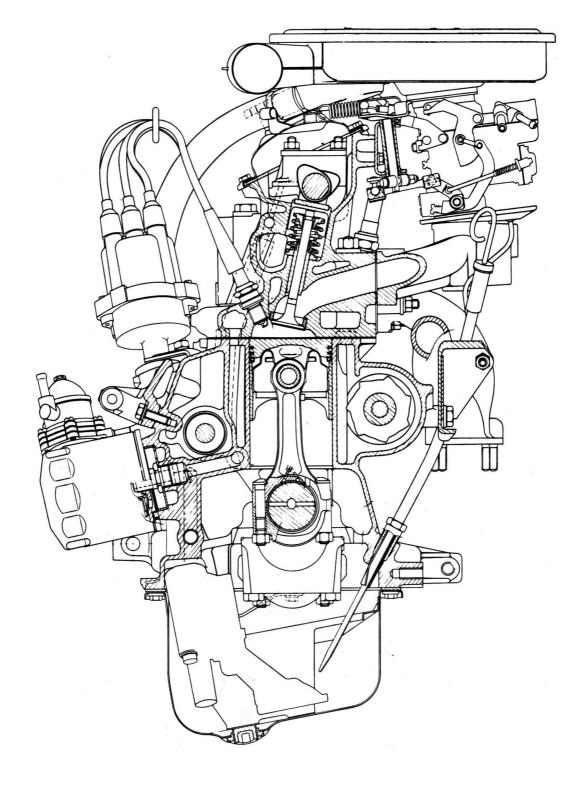
5 If the cylinder head is to be dismantled, before withdrawing the camshaft, have a suitably divided container ready so that the valve clearance adjusting shims can be extracted and kept in strict originally installed order together with their appropriate valves, springs etc.

6 All engine parts must be thoroughly cleaned and examined as explained in Chapter 1. Where required, all defective parts should be renewed before reassembly starts.

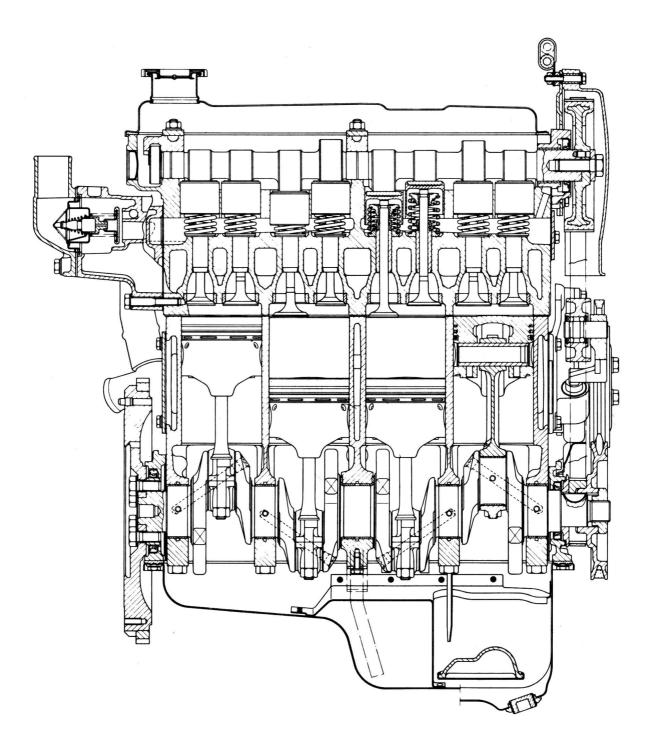
Crankshaft – refitting


7 Fit the main bearing shells to their seats in the crankcase after making sure that both shells and seats are spotlessly clean and dry (photos).

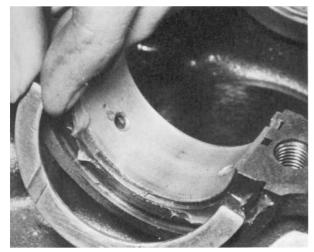
8 With a light smear of grease, fit the two half thrust washers each side of the centre bearing with the oil grooves in each washer facing away from the bearing shell (photo).


9 Using clean engine oil lubricate the bearing shells and crankshaft main bearing journals (photo).

10 Carefully lower the crankshaft into its bearings in the crankcase after making sure that it is the right way round. Spin the shaft to distribute the oil (photo).

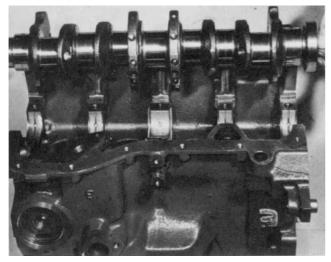

11 Fit the clean and dry bearing shells to the main bearing caps. Oil the bearing face and fit the bearing caps to the crankcase. Make sure that each cap is fitted to its own location by checking the groove marks in the base, and that each cap is the right way round. This is achieved when the axial locating tags in each half bearing shell butt on the same side (photos).

3.7B Note that central bearing shell has no oil groove but all shell are axially located by an offset tag



13.1. 1049 cc engine, longitudinal section (Sec.3)

13.2. 1049 cc engine, cross section (Sec.3)


(The engine is installed inclined 6 rearwards)

3.8 The half thrust washers are fitted each side of the centre bearing

3.9 Oil the bearings and crankshaft journals...

3.10 ... and then fit the crankshaft into the crankcase

12 Refit the main bearing cap bolts and screw them up fingertight. Spin the crankshaft and, if all is well, tighten the bolts to the specified torque load and turn the crankshaft again to check freedom of rotation (photo).

13 Measure the crankshaft endfloat with feeler gauges. If this exceeds the specified tolerance, oversize thrust washers will have to be fitted.

Pision rings - refitting

14 Follow the procedure given in Chapter 1, Section 42.

Pistons and connecting rods-reassembly

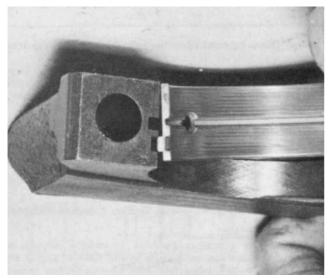
15 Follow the procedure given in Chapter 1, Section 43 (photo).

Pistons – refitting

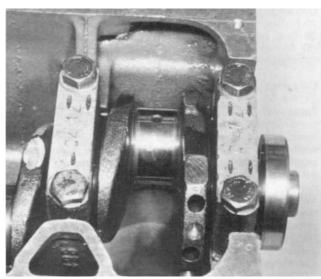
16 Follow the procedure given in Chapter 1, Section 44.

17 Note that the connecting rods in the 1049 cc engine have two oil jet holes leading from the big-end bearing (photo).

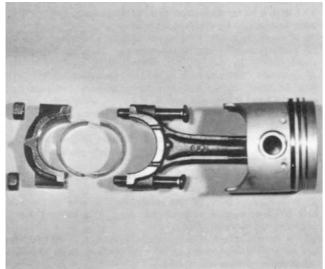
18 When the piston is correctly fitted it will have the valve depressions adjacent to the side of the block with the cylinder head studs in (photo).

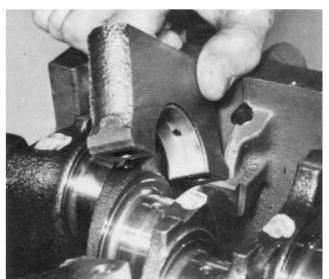

Connecting rods to crankshaftreassembly

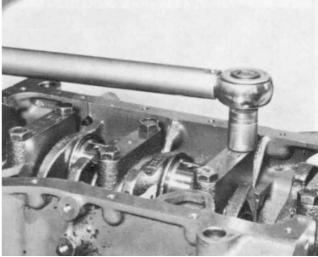
19 Follow the procedure given in Chapter 1, Section 45.


20 Torque load the big-end cap nuts to the reading quoted in the Specifications of this Chapter 13 - it is different from the value quoted for the 903 cc engine (photo).

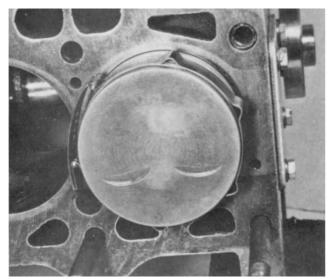
Oil pump - reassembly

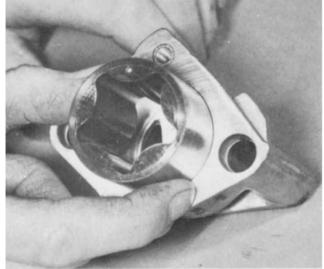

21 The oil pump fitted to the 1049 cc engine is a Hobourn-Eaton rotor type of pump which is quite different from the gear pump fitted to the 903 cc engine. It consists of a four lobed rotor rotating in a five slotted outer rotor which is mounted eccentrically to the inner rotor. As the inner rotor rotates the outer rotor is driven round, and the spaces between the lobes on the inner rotor and the slots in the outer rotor increase and decrease once per revolution. The increasing spaces are connected to the pump inlet and cause oil to be drawn into the pump. The decreasing spaces connect with the pump outlet through which the oil is forced to feed the engine. A springloaded relief valve in the outlet of the pump vents excessive oil pressure into the sump. The efficiency of the pump depends

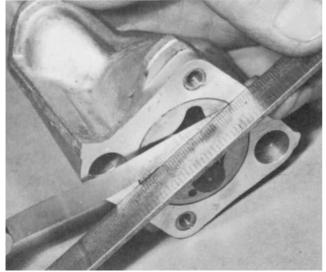

3.11A Fit the bearing shell ti the main bearing caps...

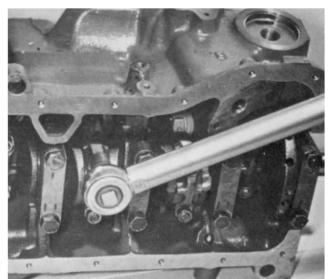

3.11C Ensure that each cap is the right way round in its own location with the one with four marks at the flywheel end of the crankcase

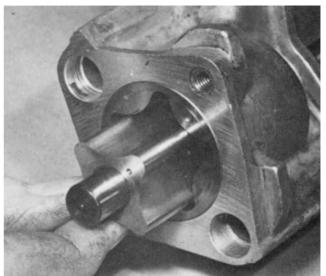
3.15 Piston and connecting rod assembly

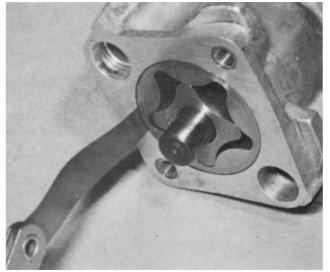

3.11B ...and then fit caps to the crankcase after oiling the shells

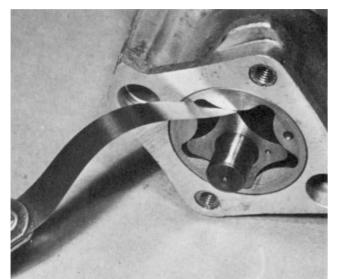

3.12 Tighten main bearing cap bolts with a torque wrench


3.17 One of the oil jet holes in the big-end – the other is on the other side of the rod

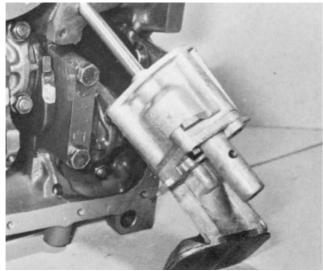

3.18 The valve depressions in the piston are adjecent to the cylinder head studs in the block

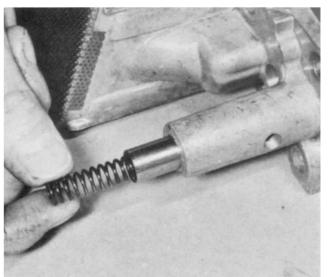

3.22A Firts fit outer rotor to the oil pump body...

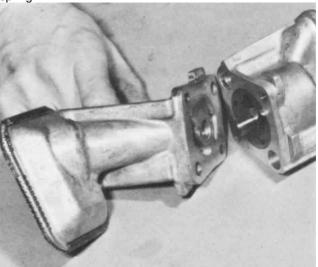

3.23 Measure the end clearance of the rotors with the pump face

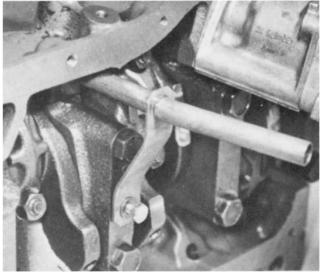

3.20 Torque tighten the big-end cap nuts

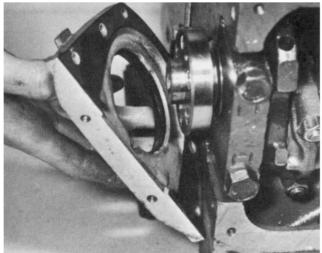
3.22B ...followed by the inner rotor

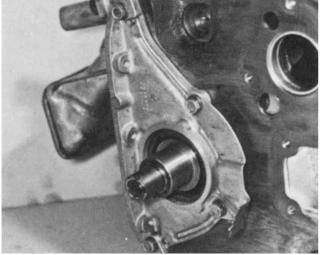

3.24 Measure the outer rotor to body clearance...


3.25 ... and the inner to outer rotor clearance


3.27B ...followed by the retainer plate and circlip


3.29 Fit the oil pump to the crankcase

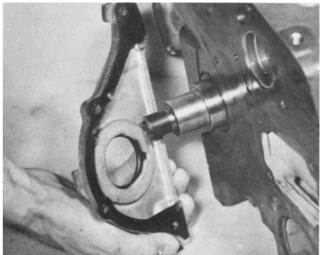

3.27A Fit the oil pump pressure relief valve plunger and spring...


3.28 Refit the pump lower half body

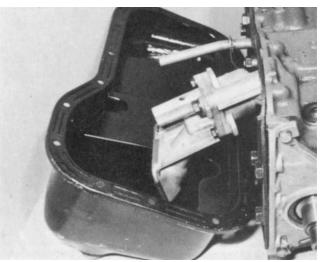
3.30 The oil tube is secured by a bracket to the centre main bearing cap with a bolt and washer

3.32 Fitting the crankshaft seal and carrier at flywheel and...

3.34 The timing indicator bracket is located behind the two top bolts of the seal carrier


on fine clearances and these should be checked during assembly.

22 Fit the outer rotor to the pump body and then fit the inner rotor (photos).


23 Lay an accurate straight edge across the faces of the rotors and pump body and measure the clearance with feeler gauges (photo).

24 Insert a feeler gauge between the outer rotor and the pump body to measure the clearance (photo).

25 Similarly insert a feeler gauge between the inner rotor lobe tip and the outer rotor to measure the clearance between the two (photo). 26 Compare the clearances with the tolerances quoted in the Specifications to this Chapter. Any excessive clearance could result in low oil pressure, and as the inner and outer rotors are matched pairs the only solution is a new or reconditioned pump assembly.

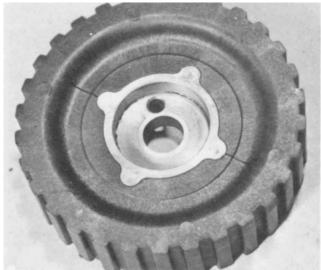
3.33 ... and at the timing cover end

3.36 Fit the sump to the crankcase

27 Fit the oil pressure relief valve plunger to the pump body followed in turn by the spring, retainer plate and circlip (photos).

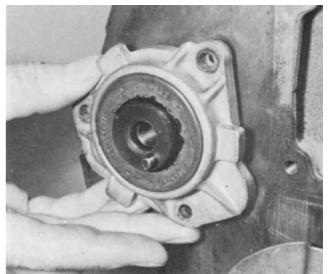

28 Lubricate the rotors with clean engine oil and refit the pump lower half body and strainer (photo).

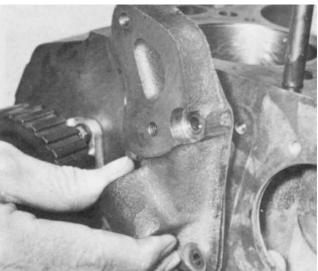
29 With a new gasket, fit the assembled oil pump to the crankcase block and secure with the two long bolts (photo). Tighten to the specified torque load.


30 Fit the oil tube to the crankcase securing it by its bracket to the centre main bearing cap with its retaining bolt. Tighten to the specified torque load (photo).

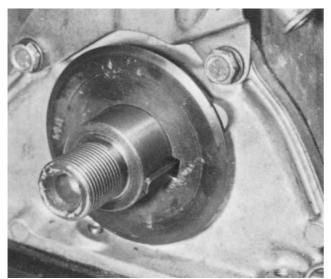
Craknshaft oil seals and carriers-refitting

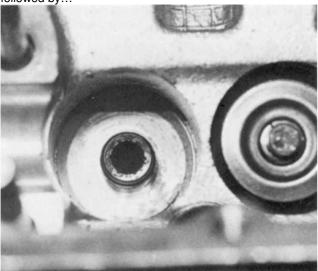
31 Clean the flywheel mounting spigot on the end of the crankshaft and lubricate the crankshaft seal with clean engine oil. Fit a new gasket.

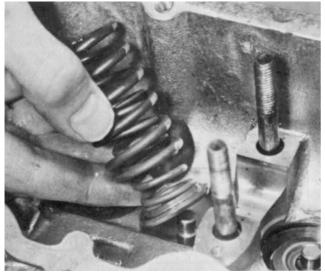

3.39 Fitting the auxiliary shaft...

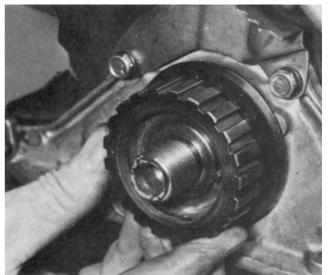

3.42 This face of the pulley fits towards the shaft

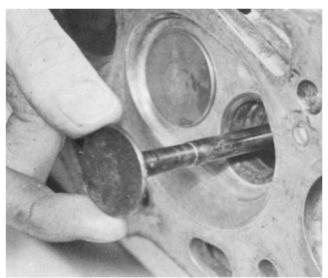
3.44 ...followed by the spring-loaded plunger...


3.40 ... and its seal and carrier

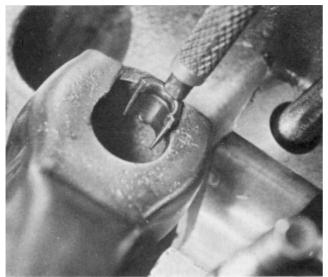

3.43 Fit the belt tensioner bracket a new gasket to the block ...


3.45 ... and then the tensioning wheel


3.46 The bevelled washer is fitted bevel outwards and is followed by...

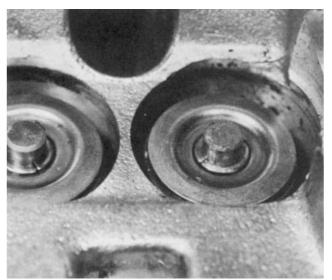

3.48A Valve guide oil seal

3.48C ... the lower spring seat and springs...


3.47 ... the crankshaft toothed pulley

3.48B Inserting a valve followed by...

3.48D ... and upper spring seat


3.48E A magnet is useful for refitting the split collets

3.49A Use a small pointed tool to ...

3.49C This shim is 4,15mm thick

3.48F After assembly a sharp tap on the valve stem will help to bed the parts in

3.49B ... prise out the vlave clearance adjusting shim

3.49D Refit each tappet bucket with its shim to its vlave

32 Carefully ease the lip of the seal onto the spigot and secure the carrier with the bolts and washers (photo).

33 Similarly clean the crankshaft at the timing belt end and fit the seal and carrier. Retain by the two bottom bolts (photo). 34 Put the timing indicator bracket over the two top bolt holes in the seal carrier and fit the two top bolts (photo).

Sump - refitting

35 Make sure that there are no remnants of the old gasket on the sump flange and fit a new gasket using a little grease to hold it in position. Check that it is bedded down evenly all round the flange.

36 Fit the sump to the crankcase. Put the load spreading washers on each bolt and screw into the crankcase (photo).

37 Tighten the bolts evenly to avoid warping the flange.

Auxiliary shaft and seal - refitting

38 Clean the auxiliary shaft bearings and lubricate with clean engine oil.

39 Insert the shaft into the crankcase bushes and rotate the shaft to spread the oil (photo).

40 Lubricate the auxiliary shaft seal in its carrier and carefully ease the seal over the shaft spigot (photo).

41 Fit the seal carrier retaining bolts and washers and tighten.

Belt pulleys and tensioner - refitting

42 Fit the toothed pulley to the auxiliary shaft. The recess in the pulley fits on the auxiliary shaft with the dowel on the shaft in the hole in the pulley (photo). Fit the retaining bolt and washer and partially tighten, as it will be necessary to wait until the drivebelt has been fitted before finally tightening this bolt. Alternatively, it is possible to hold the auxiliary shaft carefully in a vice, fit the seal and carrier to the shaft, followed by the toothed pulley and its retaining bolt and washer, and then tighten the bolt fully before fitting the complete assembly to the block.

43 The belt tensioner bracket can now be fitted. Clean off all traces of old gasket from the bracket and block and use a new gasket on assembly. Fit the retaining bolts and washers and tighten (photo).

44 Insert the spring-loaded plunger assembly into the tensioner bracket (photo).

45 The tensioning wheel in its carrier can now be fitted. Put the top bolt and washer in first and then bear down to compress the spring and fit the bottom bolt through the kidney-shaped slot. Note that this latter bolt has an additional, large washer against the wheel carrier. Temporarily tighten the two bolts they will have to be retightened after the belt has been fitted (photo). 46 If the key had previously been removed from the pulley end of the crankshaft, clean the key slot and refit the key. Then slide on the bevelled washer, making sure that the bevel is on the side away from the crankcase (photo).

47 Refit the crankshaft toothed pulley (photo). Then the V-belt pulley can be refitted together with its retaining nut and washer. Final tightening of this nut can wait until the flywheel has been fitted, when a 'gag' can be fitted to the flywheel to hold the crankshaft whilst tightening the nut - see Chapter 1, photo 23.2A.

Cylinder head and valve gear-reassembly

48 It is assumed that the valves will have already been examined and renovated as described in Chapter 1, Section 31. Follow the procedure given in Chapter 1, Section 51 to reassemble the valves, but note that new oil seals should be fitted to this engine when the valves have been inserted in the guides and before the springs are fitted (photos).

49 Each tappet bucket contains a shim in the head which is used to control the valve clearance. Before assembling the buckets to their valves, prise out each shim and take a note of the thickness. This is etched on the lower face of the shim and indicates the thickness in millimetres to two decimal places. If the number has worn off, use a micrometer to check the shim thickness. Make a table showing each valve by number and the thickness of shim on assembly. Reassemble each shim to its bucket and after lubricating with clean engine oil fit the buckets to their respective valves (photos).

50 Lubricate the two camshaft bearings in the cylinder head and carefully thread the camshaft through the driving end hole and lower it onto its bearings. The cams will rest on the tappet buckets and the camshaft should now be turned so that the two cams over No. 1 cylinder (driving end) are pointing upwards (compression/firing stroke). This is to reduce the bending load on the camshaft as the two bearing halves are being tightened down (photo).

51 Lubricate the camshaft bearing halves and fit them to their respective studs in the head. Put the steel bridge plates in position and fit the washers and nuts (photo).

52 Tighten the four nuts a little at a time

progressively until the bearing halves meet.

53 Oil the camshaft seal and carefully fit it with its carrier and a new gasket to the cylinder head (photo).

54 Position the drivebelt guard backplate over the camshaft seal carrier and fit the three bolts and washers (photo). 55 Tighten the three bolts retaining the backplate and seal carrier. Torque load the four camshaft bearing securing nuts to the specified setting.

56 Fit the camshaft toothed driving pulley with its bolt and washer. Leave the final tightening until the drivebelt is fitted (photo).

57 Check the valve clearances; the camshaft can be turned by a spanner on the pulley retaining bolt. Readjust any clearance if necessary, as described later in this Section.

58 Owing to the small clearance between a piston at TDC and the open valves during exhaust/inlet overlap, it is imperative to get the crankshaft and camshaft in their correct related positions before turning the engine after fitting the cylinder head. If this relationship is out then serious damage could be done to the valves or pistons by turning the crankshaft, as the pistons will impinge on the valve heads. To avoid this the following sequence should be observed. Set the crankshaft as described in paragraph 59, and the camshaft (before assembling the cylinder head to the block) also as described in paragraph 59. Fit the head to the block taking care not to disturb the set positions and, finally, fit the toothed drivebelt. Then the crankshaft can be turned with no likelihood of damage.

59 Set the crankshaft by using a spanner on the pulley retaining nut and aligning the mark on the pulley with the long pointer on the timing indicator bracket. Then set the camshaft by aligning the hole in the camshaft pulley with the cast ridge on the top of the camshaft seal carrier just behind the toothed pulley (photo).

60 Fit a new cylinder head gasket with the word ALTO upwards (photo). Do not use grease or any other jointing compound. 61 Taking care not to disturb the crankshaft or camshaft lower the cylinder head onto the block (photo).

62 Fit the thick washers to the studs on the manifold side of the block followed by the nuts. Fit the bolts with their thick washers to the other side of the block and screw the bolts and nuts down to lightly compress the gasket. The bolts and nuts must now be torgue loaded by stages Specifications) in sequence, to (see the specified load and in the order shown in Fig.13.3. This may present some difficulty as, owing to the shape of the cylinder head, it is not possible to get a socket spanner fitted to a torque wrench over the cylinder head nuts. These can be tightened using a ring or openended spanner as an extension to the torque wrench, but then, of course, the applied torque will be different to the torque registered or set on the torque wrench. To overcome this a simple calculation can be made so that a setting can be established for the torgue wrench which, with an extension, will produce the specified torque loading. This value varies with the ratio of the

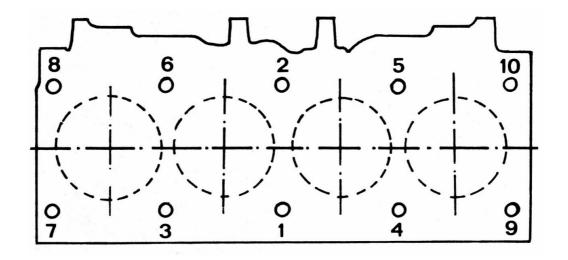
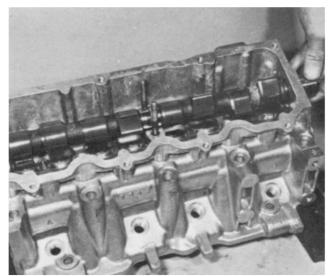
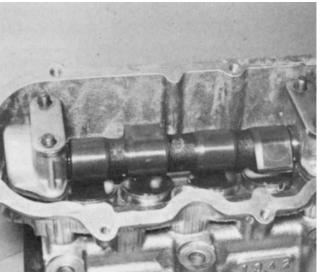
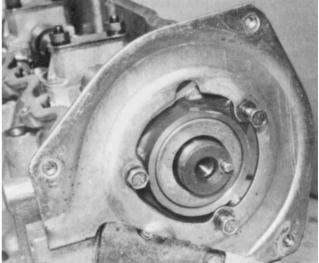



Fig. 13.3. 1049 cc engine cylinder head nut and bolt tightening sequence (Sec.3)


3.50 Position the camshaft in the cylinder head ...


3.53 Fit the camshaft seal in its carrier to the cylinder head.

3.56 Fit the camshaft toothed pulley

3.51 ... and fit the half bearings and bridge plates

3.54 ... followed by the drive belt quard backplate

3.59 Hole in pulley aligned with část ridge, view from behind the wheel

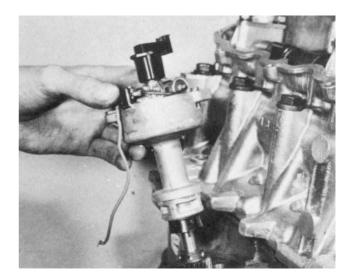
extension length and the torque wrench length and is calculated by using the formula:

$$B = Az$$

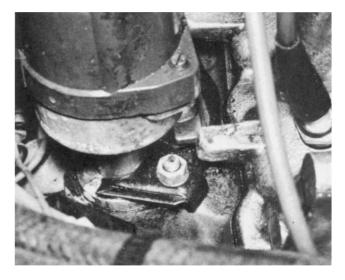
where A is the specified torque loading (lbf ft or kgf m), B is the torque to be set, or read, when using an extension (lbf ft or kgf m), y is the length of extension (ft or m), and z is the length of torque wrench (ft or m).

Example: Specified torque is 60 lbf ft, length of extension is 6 in, and length of torque wrench is 2 ft, then B = $(60 \times 2) = (6/12 + 2) = 120 = 2'/z = 48$ lbf ft; torque wrench setting or indication.

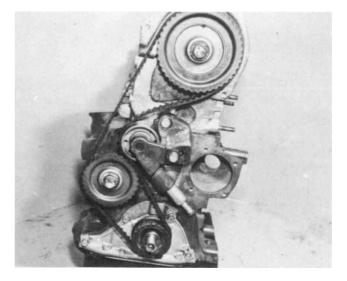
When measuring, use centres of bolts/nuts and centre of torque wrench drive square. When calculating, keep values constant, that is, don't mix inches and feet for example (photos). 63 Fit the drivebelt as described later in this Section. When fitted, the auxiliary shaft pulley bolt and the camshaft pulley bolt can be torque loaded to the specified settings if these were not done on assembly.


Distributor - refitting

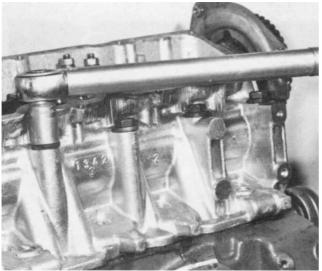
64 The distributor is mounted nearly vertical on the oil filter side of the engine and is driven by skew gears from the auxiliary shaft. In turn the distributor shaft also drives the oil pump through a splined coupling (photo).

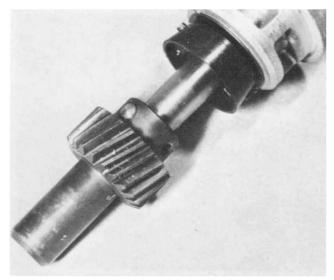

65 It is more convenient to set the contact breaker gap before fitting the distributor to the engine. Adjust to the specified clearance (photo).

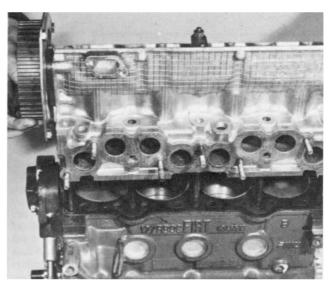
66 Turn the crankshaft in the normal direction of rotation until the line on the crankshaft pulley is adjacent to the first of the three pointers on the timing bracket. This is 100 BTDC, the second pointer is 50 BTDC and the large, third pointer is TDC. Note which cylinder, either 1 or 4, is on the compression stroke. This is indicated by both of the inlet and exhaust cams pointing upwards causing their relative valves to be shut. 67 Rotate the distributor shaft until the rotor is opposite the terminal in the distributor cap serving the same cylinder number as the one which was on compression stroke and with the contact breaker points just breaking.

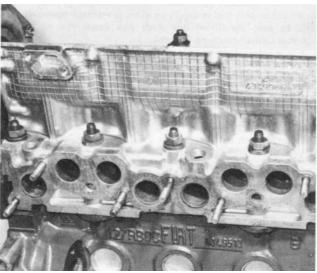

68 Lubricate the distributor skew gear with clean engine oil and insert the distributor into the engine block. Watch the rotor carefully to see how much it turns as the skew gears mesh. Then withdraw the distributor, reset the rotor and then preset it the same amount that it turned

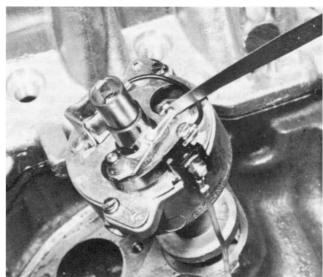
3.68 Fitting the distributor


3.70 Distributor clamp bolt

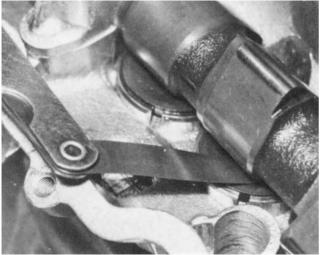

3.77 Fitting the toothed drivebelt-crankshaft V-belt pulley removed for clarity

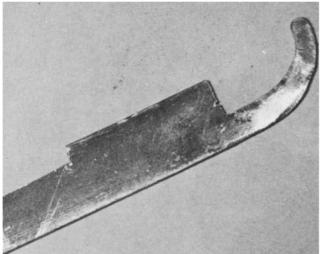

3.60 The cylinder head gasket is fitted ALTO upwards


3.62A Tighten the cylinder head bolts and nuts to the specified torque


3.64 Distributor driveshaft skew gear


3.61 Lower the cylinder head onto the block


3.62B These cylinder head nuts might be difficult to torque tighten


3.65 Checking the contact breaker gap

3.78 Setting the belt tensioner

3.84 Checking a valve clearance

3.87 Made-up tool for depressing tappet buckets

when initially inserted; then reinsert it into the engine. Ideally the contact points should be just breaking with the rotor opposite the correct numbered terminal in the cap. If this is not the case, repeat on a trial and error basis until this is achieved (photo).

69 Fit the clamp washer and nut and lightly tighten temporarily.

70 With a lamp and battery across the contact breaker points and the clamp nut just loosened, move the distributor body round its axis until the light just goes out. Tighten the clamp nut to the specified torque load (photo).

Toothed drivebelt - removal, refitting and adjusting

Note: If adjustment is necessary on an old belt or if the belt is removed for any reason, always change the belt for a new one, never adjust using the old belt.

71 The toothed drivebelt should be renewed at 36 000 miles (60 000 km). This can be done with the engine in the car. 72 Using a spanner on the crankshaft pulley nut turn the engine over until the timing mark on the crankshaft pulley is aligned with the TDC pointer (long one).

73 Remove the drivebelt cover and the alternator/water pump drivebelt.

74 Check that the camshaft pulley timing hole is aligned with the cast ridge on the seal housing; refer to paragraph 59 of this Section. If it isn't, turn the engine over one revolution to get it lined up.

75 Before removing the drivebelt it must be remembered that neither the camshaft nor the crankshaft must be moved with the belt off, If this precaution is not observed the pistons and valves could impact causing serious damage.

76 Release the tension on the drivebelt by slackening the bolt in the kidney-shaped slot on the tensioner bracket, loosening the other (pivot) bolt, pushing the tensioner wheel against the spring unit and tightening both bolts. Slide the drivebelt off the pulleys.

77 Fit the new belt. Start at the crankshaft drive pulley and, taking care not to kink or strain the belt, ease it into place over the auxiliary shaft pulley and the camshaft pulley. It might be necessary to slightly turn the camshaft to get the belt to mesh. This should always be done in the direction of least movement to achieve a mesh, Fit the belt on the tensioner pulley last. If this is difficult do not lever or force the belt on but recheck it and try again (photo). 78 Slacken the tensioner bolts to tension the belt and retighten the bolts (photo).

79 Turn the engine over for two complete revolutions to even out belt tension. Then again slacken the tensioner bolts to let the tensioner take up any slack and retighten the bolts. Never turn the engine backwards or rock the camshaft when tensioning the belt, as slack could develop in the belt and it might jump a tooth.

80 Refit and tension the alternator/water pump V-belt. Refit the drivebelt cover.

Valve clearances - adjustment

81 Checking the valve clearances should be done at the 6000 miles servicing, or whenever the cylinder head has been removed and refitted for any reason. It is important that the clearances are set correctly, otherwise the timing will be wrong and the engine performance will be poor. If there is no clearance at all, the valves and seats will soon get burnt. Set the clearances with the engine cold.

82 Remove the camshaft cover. The engine can be turned over by either using a spanner on the crankshaft pulley nut, or by jacking up a front wheel, engaging top gear and using the wheel to turn the engine.

83 Each tappet must be checked when its operating cam is pointing upwards, 1800 away from the tappet. Check the clearances in the firing order, No. 1 cylinder first and then 3, 4 and 2. Do the exhaust of one cylinder and the inlet of the one after, at the same time to minimise the amount of engine turning. Counting from the timing belt end, exhaust valves are 1-4-5-8, inlet valves 2-3-6-7.

84 Insert the feeler gauge for the appropriate valve. See the Specifications for correct settings. The feeler should slide in readily between cam and shim, but with slight frictional drag. Try one a size thicker and one a size thinner. The thick one should not go in and the thinner one should be too loose (photo).

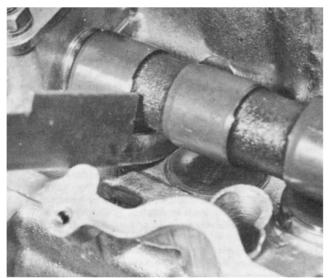
85 If the clearance is wrong, measure the clearance and write it down with the number of the valve. When all the clearances have been checked, it will be necessary to remove those shims which are fitted where the clearances are wrong, and renew them with different thickness shims. If a clearance is too big, use a thicker shim. If a clearance is too small use a thinner shim. Calculate by simple subtraction.

86 To change a shim, turn the engine until the relevant cam is pointing upwards, then turn the tappet in its housing so that the slot in the rim is accessible.

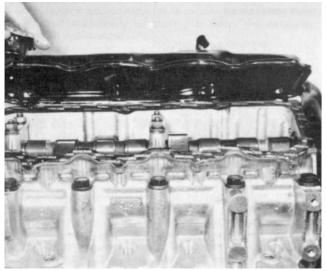
87 The manufacturer provides special tools for depressing tappets (Nos. A60480 and A60443). These make the job easier if they can be borrowed, but it is possible to do the job without them. The best way is to make up a tool from a piece of steel plate shaped as shown in the photograph. Alternatively use a screwdriver to lever the tappet down and another one, on edge, to hold the tappet down by positioning it between the camshaft and the rim of the tappet; then remove the lever. This is quite tricky and needs some care to avoid any damage. If in any doubt about doing this job it should be left to a FIAT agent. As well as having the right tools he will also have a stock of shims from which to choose those required to correct wrong clearances. It is expensive buying shims that are not required (photo).

88 With the tappet held down, prise the shim out with a thin screwdriver. The FIAT way is to lift the shim using compressed air, which is effective if an air line is available. The shims are held in quite strongly by the oil film and they must be lifted up square or they will jam. Remove the shim with long-nosed pliers (photos).

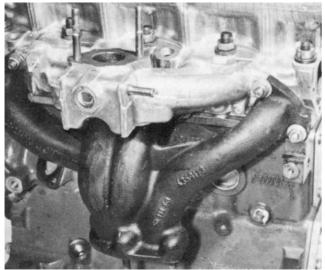
89 When new, shims have their thickness marked in millimetres on their undersides. This marking may wear off and then it will be necessary to measure their thickness with a micrometer. From the thickness of the shim and the error in the clearance, calculate the size of shim required to produce the correct clearance.


90 Insert the new shim, numbered side down towards the tappet. Remove the tools used for depressing the tappet and repeat the operation until all clearances are correct.

91 Using clean engine oil lubricate all moving and sliding parts in the camshaft/tappet assembly. Fit a new gasket and refit the camshaft cover together with the nine bolts and washers. Tighten the bolts progressively (photo).

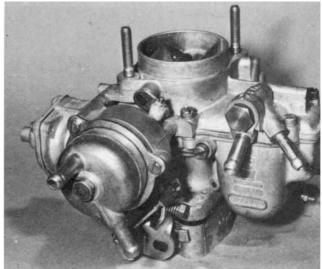

Engine - final assembly

92 Completing assembly of the 1049 cc engine follows broadly the procedure for that of the smaller engine which is dealt with in Chapter 1, Section 56.


93 The manifold gasket is supplied in two parts for the 1049 cc engine (photo). These serve

3.88A With the tappet depressed...

3.91 Fit the camshaft cover with a new gasket


3.93B ... and the manifolds fitted

3.88B ... the shim can be removed

3.93A The two-pieces gasket for manifold joint...

4.1 Weber 32 ICEV carburettor



Fig. 13.4 Engine mounting (right-hand side) (Sec.3)

both the inlet and exhaust manifolds which are on the same side of the engine.

Engine removal - 127 Special and 127 from chassis number 1104290 onwards

94 The removal of the engine assembly from these models is slightly different from that described in Chapter 1, owing to redesigned engine mountings.

95 For the later type of mountings, disconnection of the engine is achieved by removal of the engine suspension mounting securing bolts after taking the weight of the assembly on a hoist.

96 On refitting the assembly tighten the securing bolts to the specified torque load.

4. Fuel system

Carburettors - general

1 On L, C and CL models the 1049 cc engine is fitted with either a Weber 32 ICEV 161150 or a Solex C32 TDI/4 carburettor with a downdraught single venturi and automatic coolant heated choke (photos).

2 On Sport versions, a dual venturi Weber carburettor is fitted with manual choke.

Weber or Solex single venturi carburettors

Removal and refitting

- 3 Remove the air cleaner
- 4 Disconnect the throttle cable (photo).

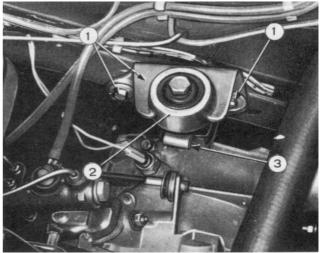


Fig. 13.5. Engine mounting (left-hand side) (Sec.3)

1 – Mounting to chassis bolts

2 – Mounting

3 – Mounting to transmission bracket

5 Disconnect the distributor vacuum pipe (photo). 6 Disconnect the fuel flow and return hoses

7 Disconnect the coolant hoses from the automatic choke housing and tie the pipes as high as possible to prevent coolant loss (photo).

8 Unbolt the carburettor flange mounting bolts and lift the carburettor from the manifold.

9 Refitting is a reversal of removal, but use a new flange mounting gasket

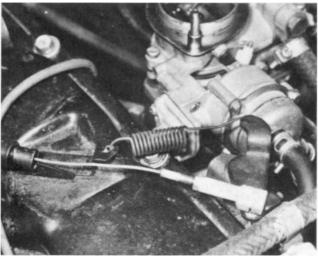
Dismantling and adjustment

10 Clean the outside of the carburettor, remove the top cover screws and lift off the cover.

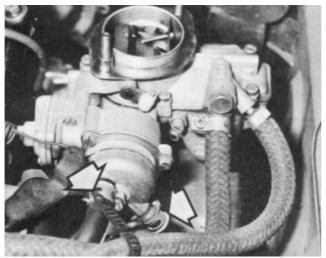
11 Clean out the float bowl.

12 Any jets or bleed screws if removed, should only be cleaned by blowing air through them. Never probe with wire or their calibration will be ruined.

13 Check the float level by holding the carburettor cover vertically so that the float hangs down, and then measure between the casting flange and the nearest point of the float. Adjust if necessary by bending the float arm tab until the clearance conforms with the Specifications according to carburettor.


14 The automatic choke will not normally require dismantling, but if the cover is removed, make sure that the centre index marks on the cover and housing are in alignment before tightening the choke cover screws.

15 On later carburettors, the mixture screw is fitted with a tamperproof cap and adjustment to the slow-running should therefore be limited to altering the throttle speed screw.


16 On earlier carburettors, or if new components have been fitted to carburettors having a tamperproof screw, then the slow-running and mixture can be altered, but only if an exhaust gas analyser is available in the case of later carburettors, after the tamperproof cap has been broken off.

17 On earlier units, use a device such as a mixture adjustment aid or a vacuum gauge fitted in accordance with the manufacturers' instructions to obtain the correct slow-running adjustment.

18 On later units, an exhaust gas analyser, again used in accordance with the maker's instructions, will ensure that the CO level is within the limits specified. Fit a new tamperproof cap on completion.

4.4 Throttle cable connection to Weber single venturi carburettor

4.7 Weber single venturi carburettor showing coolant hoses (arrowed) to automatic choke housing. Note fuel hoses connected to top right of carburettor

Weber dual venturi carburettor

Removal and refitting

19 These operations are similar to the operations described in paragraphs 3 to 9 of this Section, but the unit is of manually operated choke design and will therefore not have coolant hose attachments. A choke cable is fitted instead.

Dismantling and adjustment

20 The operations are similar to those described for the single venturi type carburettor, once the upper body has been removed (six screws).

21 If jets are extracted, identify them as to which side of the carburettor (primary or secondary) they came from.

4.5 Weber single venturi carburettor installed (vacuum pipe arrowed

7.6 Location of fuse block - 1049 cc engine models

22 To check the float setting, hold the carburettor cover vertically with the float hanging down. The distance 'a' (see Fig. 13.8) measured between the float and the cover (with gasket fitted) should be 7 mm ± 0.25 mm. Where necessary, bend the float tongue.

23 This type of carburettor is fitted with a tamperproof cap on the mixture screw, and unless an exhaust gas analyser is available, restrict any adjustment to the slow-running to turning the throttle speed screw.

Carburettor overhaul – general

24 Whenever it is decided to overhaul a carburettor, always obtain the appropriate repair kit in advance. If throttle or choke valve plates or their spindles are worn, do not dismantle them but obtain a new carburettor. A new carburettor

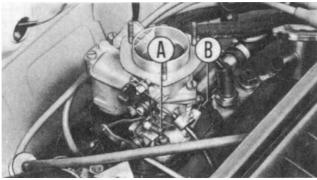


Fig. 13.6. Solex carburetor adjustment screw (Sec.4) A – Throttle speed screw B – Sealed mixture screw

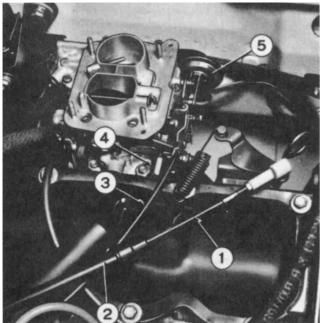


Fig. 13.8. Weber dual venturi carburettor (Sec.4)

1 – Throttle cable

2 - Cable conduit

- 5 Throttle control diaphragm
- 3 Choke cable

- 4 Throttle speed screw

is an economical proposition if the original one has seen service to a high mileage. Very often a generous allowance is made for the old unit.

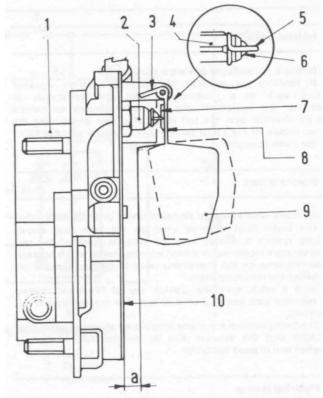


Fig. 13.7. Weber dual venturi carburettor flost setting diagram (Sec.4)

- 1 Carburettor top cover 7 – Float arm tab
- 2 Fuel inlet needle valve 8 Float arm
- 3 Float stop
- 4 Needle
- 10 Gasket
- 5 Return hook 6 – Ball
- $a = 7 \pm 0.25 mm$

9 – Float

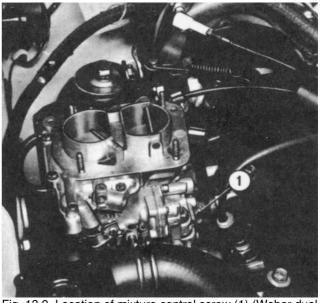


Fig. 13.9. Location of mixture control screw (1) (Weber dual venturi carburettor) (Sec.4)

..... nedokončeno